Step of Proof: member_nth_tl
11,40
postcript
pdf
Inference at
*
2
I
of proof for Lemma
member
nth
tl
:
.....upcase..... NILNIL
1.
T
: Type
2.
n
:
3. 0 <
n
4.
x
:
T
,
L
:(
T
List). (
x
nth_tl(
n
- 1;
L
))
(
x
L
)
x
:
T
,
L
:(
T
List). (
x
nth_tl(
n
;
L
))
(
x
L
)
latex
by InductionOnList
latex
1
:
1:
5.
x
:
T
1:
6.
T
List
1:
(
x
nth_tl(
n
;[]))
(
x
[])
2
:
2:
5.
x
:
T
2:
6.
T
List
2:
7.
u
:
T
2:
8.
v
:
T
List
2:
9. (
x
nth_tl(
n
;
v
))
(
x
v
)
2:
(
x
nth_tl(
n
;[
u
/
v
]))
(
x
[
u
/
v
])
.
Definitions
P
Q
,
(
x
l
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
a
<
b
,
,
Type
,
s
=
t
,
t
T
,
type
List
Lemmas
l
member
wf
origin